Space-Group Changes - Revised Structures of Seven Compounds

By Moshe Kapon and George M. Reisner*
Department of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel

(Received 17 March 1989; accepted 21 June 1989)

Abstract

Revised structures are reported for seven crystalline compounds, based on space groups of higher symmetry than originally reported. In two cases the crystal class is revised, in five cases only centres of symmetry are added. For one of the latter cases the original F values have been used and least-squares refinement has been carried out in the centrosymmetric space group with more satisfactory results than originally reported.

Introduction. We present revised crystal structures of seven compounds based on space groups of higher symmetry than previously reported. In six cases centres of symmetry have been added, in one of these the crystal class is also revised from monoclinic (C2) to tetragonal $(14 / m)$. In one case the Laue symmetry is increased from $2 / \mathrm{m}$ to mmm .

Addition of centres of symmetry removes the singularities associated with refining a centrosymmetric structure in a non-centrosymmetric space group and highly significant parameter changes usually result (Schomaker \& Marsh, 1979; Marsh \& Herbstein, 1988). For one of the cases involving just an addition of a centre of symmetry we have carried out a successful refinement based on the original structure factors. Details follow.

Category 1: centre of symmetry added, no refinement

Four such cases are reported. Information concerning the compound, the original and revised space groups, and the necessary revisions of the structural parameters is given in Table 1.

Category 2: centre of symmetry added, structure re-refined
N, N^{\prime}-Trimethylenebis(2-hydroxyacetophenone iminato)copper (II), $\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right]$. The structure of the compound was described (Iida, Oonishi, Nakahara \& Komiyama, 1970) in space group Cc (four molecules in the unit cell) and refined to $R_{F}=$ 0.093 for 1220 visually measured reflections. The authors note that 'the six-membered chelate ring has approximately a twofold axis of rotation through the central copper atom and the central atom $\mathrm{C}(10)$ of

[^0]0108-2701/90/030349-02\$03.00
the ligand'. The structure is better described in space group $C 2 / c$. The $C 2 / c$ coordinates were obtained by shifting the origin by $z=0 \cdot 2488$, thus placing the Cu and $\mathrm{C}(10)$ atoms on the twofold axis $(0, y, 0 \cdot 25)$ and averaging the coordinates of the other atoms, related in pairs, by this axis.

Values of 1217 reflections were recovered from the original paper and the structure refined using the SHELX77 system of programs (Sheldrick, 1977). Full-matrix least squares [unit weights, 123 parameters refined (scale factor, anisotropic displacement factors for the non- H atoms and isotropic for the H atoms) converged at $R_{F}=0.088 . \dagger$ The $C 2 / c$ parameters are considerably more precise than those

[^1]Table 1. Pertinent information concerning the four compounds of category 1

nd sp	Original space group	Revised space group	Reference
$\mathrm{Mg}\left(\mathrm{ReO}_{4}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{*}$	P1	P ${ }^{\text {T }}$	Matveeva, Varfolomeev, Samraj \& Lunk (1986)
	P1	PT	Tafeenko, Prozorovskii, Rybakov \& Kovalev (1987)
$\mathrm{NdTaO}_{4} \ddagger$	Pa	P2/a	Yamnova, Pushcharovskaya Bogdanova \& Leonyuk (1986)
(1,2,5,6• η-Cycloocta-1,5-diene)bis(2-methoxy-methyl-6-methylphenyl)platinum(II)§	- Cc	C2/c	Debaerdemaeker, Baumgärtner \& Brune (1987)
* The $P \overline{1}$ coordinate origin to $x=-0.4908$ relate as $x y z$ and $\bar{x} \bar{y} \bar{z}$. \dagger The $P \overline{1}$ model $[\mathrm{Ta}$ of atoms of molecules resulting centre of sy which becomes the ori \ddagger The $P 2 / a$ coordin the origin by $x=0.2527$ twofold axes and then § The C2/c coordina the origin to $x=0.24$ twofold axis $(0,0.6398$ other atoms related by	tes [Table 1 $8, y=-0.48$ Table $2 A$ (de es 1 and 2 and symmetry is rigin in spac inates [Table 2527 and $z=$ n averaging nates [Table 2487 and z $98,0.25$) and by this axis.	(deposited)] 96 and $z=-$ osited)] is de d also 3 and at $x^{\prime}=1 \cdot 12$ group $P \overline{1}$. $3 A$ (deposite -0.0029 so t $\mathrm{O}(1)$ with $\mathrm{O}(3)$ $4 A$ (deposited) 0.4736 thus averaging (in	are obtained by shifting the 0.5083 so that the Re atoms erived by symmetrizing pairs $4\left[x^{\prime}=\frac{1}{2}\left(x_{1}+x_{2}\right)\right.$, etc.]. The 298, $y^{\prime}=0.3432, z^{\prime}=0.4011$ d)] are obtained by shifting that atoms Ta and Nd lie on $3)$ and $O(2)$ with $O(4)$.)] are derived by translating placing the Pt atom on the pairs) the coordinates of the

© 1990 International Union of Crystallography
reported for the $C c$ refinement (the e.s.d.'s are about half as large). The geometry of the molecule was found to be close to that previously reported.

Category 3: centre of symmetry added and crystal class revised, no further refinement

Aquatetrakis(3,5-dimethylpyrazole)copper diperchlorate, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2}$. The crystal structure of the complex was reported (Pervukhina, Podberezskaya, Lavrenova, Larionov \& Bakakin, 1986) in space group $C 2[a=19.783(5), b=$ $16 \cdot 271$ (6), $c=13 \cdot 994$ (6) $\AA, \beta=134 \cdot 98$ (3) $\left.{ }^{\circ}, Z=4\right]$. The lattice vectors [001], [101] and [010] define an I-centred tetragonal cell ($a^{\prime}=13.994, b^{\prime}=13.994, c^{\prime}$ $=16.217 \AA, \alpha=90.00, \beta=90.00, \gamma=89.96^{\circ}, Z=$ 4). The corresponding coordinate transformations x^{\prime} $=\bar{x}+z, y^{\prime}=x, z^{\prime}=y$ led to a structure that conforms quite closely to the symmetry of $I 4 / m$ (No. 87). The $I 4 / m$ coordinates have been deposited (Table $8 A$). Since in space group $I 4 / m$ the Cl atom lies on a mirror with one of the $\mathrm{Cl}-\mathrm{O}$ vectors almost perpendicular to this plane, the perchlorate group must be disordered. The structure is characterized by two types of hydrogen bonding both involving the ClO_{4}^{-} O atoms as acceptors with the water molecule and $\mathrm{N}(2)$ acting as donors $[$ i.e. $\mathrm{O}(4) \cdots \mathrm{N}(2)=2 \cdot 808 \AA$ and $\mathrm{O}(2) \cdots \mathrm{O}(9)(x, y, \bar{z})=2 \cdot 721 \AA]$.

Category 4: chang̀e in Laue group

Tris(methyltrimethylsilylphosphino)phosphine, $\mathrm{P}[\mathrm{P}-$ $\left(\mathrm{SiMe}_{3}\right) \mathrm{Me}_{3}$. The structure of this compound was described (Fritz, Stoll, Hönle \& Schnering, 1986) in space group $C c$ [monoclinic, $a=9.844$ (11), $b=$ 19.650 (40), $c=26.054$ (27) $\AA, \beta=100.91$ (9) ${ }^{\circ}, Z=$ 8] and refined to $R_{F}=0.09$ ($w R=0.07$) using 2051
reflections with $I \geq 3 \sigma(I)$. It is properly described as orthorhombic, space group Fdd2 (No. 43). The lattice vectors [010], [102] and [$\overline{1} 00$] define a cell with $a^{\prime}=19 \cdot 650, b^{\prime}=51 \cdot 166, c^{\prime}=9 \cdot 844 \AA, \alpha^{\prime}=89 \cdot 98, \beta^{\prime}$ $=90.00, \gamma=90.00^{\circ}, Z=16$. The corresponding transformations $x^{\prime}=\bar{y}, y^{\prime}=z / 2+0.0665, z^{\prime}=\bar{x}+$ $z / 2$ yield coordinates for atom pairs that are compatible (within three times the reported e.s.d.'s) with space group Fdd2. The Fdd2 coordinates have been deposited (Table 9A).

We are grateful to Professor F. H. Herbstein Technion) for bringing the structure of N, N-trimeth-ylene(2-hydroxyacetophenone iminato)copper(II) to our attention and for helpful discussions.

References

Debaerdemaeker, T., Baumgärtner, R. \& Brune, H.-A. (1987). Z. Kristallogr. 180, 171-177.

Fritz, G., Stoll, K., Hönle, W. \& Schnering, H. G. (1986). Z. Anorg. Allg. Chem. 544, 127-136.
Ima, K., Oonish, I., Nakahara, A. \& Komiyama, Y. (1970). Bull. Chem. Soc. Jpn, 43, 2347-2354.
Marsh, R. E. \& Herbstein, F. H. (1988). Acta Cryst. B44, 77-88.
Matveeva, R. G., Varfolomeev, M. B., Śamraj, N. B. \& Lunk, H.-J. (1986). Z. Anorg. Allg. Chem. 532, 193-196.

Pervukhina, N. V., Podberezskaya, N. V., Lavrenova, L. G., Larionov, S. V. \& Bakakin, V. V. (1986). J. Struct. Chem. (USSR), 27, 434-438.
Schomaker, V. \& Marsh, R. E. (1979). Acta Cryst. B35, 19331934.

Sheldrick, G. M. (1977). SHELX77. Program for crystal structure determination. Univ. of Cambridge, England.
Tafeenko, V. A., Prozorovski, A. E., Rybakov, V. B. \& Kovalev, V. V. (1987). J. Struct. Chem. (USSR), 28(1), 158-163.
Yamnova, N. A., Pushcharovskaya, D. Yu., Bogdanova, A. V. \& Leonyuk, L. I. (1986). Sov. Phys. Crystallogr. 31(5), 528-530.

Acta Cryst. (1990). C46, 350-354

The Structure of Hexaaquanickel(II) Chlorate

By Judith C. Gallucci and Roger E. Gerkin*
Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA

(Received 27 January 1989; accepted 6 June 1989)

Abstract. Hexaaquanickel(II) chlorate, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]-$ $\left(\mathrm{ClO}_{3}\right)_{2}, M_{r}=333 \cdot 69$, cubic, $\mathrm{Pa} \overline{3}, a=10.3159$ (5) \AA, $V=1097 \cdot 80(5) \AA^{3}, \quad Z=4, \quad F(000)=680, \quad D_{x}=$ $2.02 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \bar{\alpha})=0.71069 \AA, T=296 \mathrm{~K}, \mu$ $=23.13 \mathrm{~cm}^{-1}, R=0.026$ for 388 unique reflections having $I>\sigma_{I}$. The single type of Ni ion is coordi-

[^2]0108-2701/90/030350-05\$03.00
nated by six water-molecule O atoms, each at an observed distance 2.054 (1) \AA, in an almost regular octahedral array. The single type of chlorate ion has a $\mathrm{Cl}-\mathrm{O}$ bond length $1 \cdot 487$ (1) \AA and $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ bond angle $106 \cdot 45(6)^{\circ}$. The $\mathrm{Ni}-\mathrm{O}$ complex, but not the chlorate ion, manifested rigid-body behavior. The $\mathrm{Ni}-\mathrm{O}$ distance corrected for rigid-body motion is $2.060 \AA$. Location and refinement of the two (c) 1990 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: \dagger Final positional parameters and equivalent displacement factors of the non-H atoms (Table 5A), anisotropic displacement factors of the non-H atoms (Table 6A), coordinates of the H atoms (Table $7 A$) and a list of structure factors for $\left[\mathrm{Cu}\left(\mathrm{C}_{19} \mathrm{H}_{20^{-}}\right.\right.$ $\mathrm{N}_{2} \mathrm{O}_{2}$)] together with the revised coordinates of the remaining compounds have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52370 (17 pp .). Copies may be obtained through the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom all correspondence should be addressed.

